
Derivation of the EM algorithm for constrained

and unconstrained multivariate autoregressive

state-space (MARSS) models

Elizabeth Eli Holmes
Northwest Fisheries Science Center

Mathematical Biology Program
NOAA Fisheries

2725 Montlake Blvd E., Seattle, WA 98112
eli.holmes@noaa.gov

http://faculty.washington.edu/eeholmes

October 27, 2010

Contents

1 Overview 2

2 The EM algorithm 4

3 The unconstrained update equations 6

4 Missing values modifications 16

5 The constrained update equations 20

6 Implementation comments 34

7 MARSS R package 35

citation: Holmes, E. E. 2010. Derivation of the EM algorithm for constrained and unconstrained multivariate autore-

gressive state-space (MARSS) models. Unpublished report. Northwest Fisheries Science Center, NOAA Fisheries,

Seattle, WA, USA.

1

1 Overview

EM algorithms extend likelihood estimation to cases with hidden states, such as
when observations are corrupted and the true population size is unobserved. EM
algorithms are widely used in engineering and computer science applications.
The reader is referred to McLachlan and Krishnan (2008) for general background
on EM algorithms and to Harvey (1989) for a discussion of EM algorithms for
time-series data. Coding an EM algorithm is not as involved as the following
30+ pages might suggest. In most texts, the majority of the steps shown in
this technical report would be subsumed under the line “the equations follow
directly from the likelihood...”. This technical report lays out in detail all of
the steps between the likelihood and the EM update equations.

The EM algorithm that I have seen presented in textbooks is for the uncon-
strained MARSS model where all parameters elements are estimated. In my
research group, we work mainly with constrained MARSS models where there
are fixed and shared values throughout the parameter matrices. An example of
a shared value would be a shared drift term (u) across all state processes (ran-
dom walks) in a MARSS model. In this report, I review the derivation of the
unconstrained EM algorithm and then show the derivation of the constrained
MARSS update equations. See also Wu et al. (1996) and Zuur et al. (2003) for
other examples of the EM algorithm for different classes of constrained MARSS
models.

One issue that I do not cover is “identifiability”, i.e. does a unique solution
exist. For a given MARSS model, you will need to fix some of the parameter
elements in order to produce a model with one solution. How to do that depends
on how you are using the MARSS model and what specific model you are using.
If you are lucky, someone in your field is using a similar type of MARSS model
and has already worked out how to constrain the model to ensure identifiability.

The linear MARSS model is

xxxt = Bxxxt−1 + u + wt, where wt ∼ MVN(0,Q) (1a)
yyyt = Zxxxt + a + vt, where vt ∼ MVN(0,R) (1b)

xxx1 ∼ MVN(π,V1) (1c)

My derivation of the EM algorithm for the unconstrained1 MARSS model is
based on the derivation by Ghahramani et al.(Ghahramani and Hinton, 1996;
Roweis and Ghahramani, 1999). This EM algorithm was originally derived
by Shumway and Stoffer (1982), but my derivation follows Ghahramani et al’s
slightly different development2. Here, this derivation is extended to the case of a
constrained MARSS model where there may be fixed and shared elements in the
parameter matrices. The algorithm consists of an expectation step (”E step”),

1“unconstrained” means that each element in the parameter matrix is estimated and no
elements are fixed or shared.

2One difference is the treatment of the initial condition. The initial condition is xxx1 in my
derivation not xxx0. The result is that my update equations are slightly different than Shumway
and Stoffer’s; although both lead to the same maximum-likelihood parameter estimates.

2

which computes the expected values of the hidden states using the Kalman fil-
ter/smoother, combined with a maximization step (”M step”), which computes
the maximum-likelihood estimates of the parameters given the data and the
expected values of the hidden states.

1.1 The joint log-likelihood function

The EM algorithm uses the joint log-likelihood of the data and hidden states3

log L(yyyT1 ,xxx
T
1 |Θ) = −

T∑
1

1
2

[yyyt − Zxxxt − a]>R−1[yyyt − Zxxxt − a]− T

2
log |R|

−
T∑
2

1
2

[xxxt −Bxxxt−1 − u]>Q−1[xxxt −Bxxxt−1 − u]− T − 1
2

log |Q|

− 1
2

[xxx1 − ξ]>V −1
1 [xxx1 − ξ]− 1

2
log |V1| −

n

2
log 2π

(2)

yyyT1 is shorthand for all the data from time t = 1 to t = T . n is the number of
data points. The likelihood function comes from the likelihood function for a
multivariate normal distribution sinceXXXt|xxxt−1 is multivariate normal and YYY t|xxxt
is multivariate normal. Here XXXt denotes the random variable “hidden states at
time t” and xxxt is a realization from that random variable.

The terms in the joint log-likelihood can be expanded out into the rather
longer form:

log L(yyyT1 ,xxx
T
1 |Θ) =

− 1
2

T∑
1

[
(yyyt)

>R−1yyyt − (yyyt)
>R−1Zxxxt − (Zxxxt)>R−1yyyt − a>R−1yyyt

− (yyyt)
>R−1a + (Zxxxt)>R−1Zxxxt + a>R−1Zxxxt + (Zxxxt)>R−1a

+ a>R−1a
]
− T

2
log |R|

− 1
2

T∑
2

[
(xxxt)>Q−1xxxt − (xxxt)>Q−1Bxxxt−1 − (Bxxxt−1)>Q−1xxxt

− u>Q−1xxxt − (xxxt)>Q−1u + (Bxxxt−1)>Q−1Bxxxt−1 + u>Q−1Bxxxt−1

+ (Bxxxt−1)>Q−1u + u>Q−1u
]
− T − 1

2
log |Q|

− 1
2

[
(xxx1)>(V1)−1xxx1 − ξ>(V1)−1xxx1 − (xxx1)>(V1)−1ξ + (ξ)>(V1)−1ξ

]
− 1

2
log |V1| −

n

2
log 2π

(3)

3This is not the log likelihood output by the Kalman filter. The log likelihood output by
the Kalman filter is the log L(yyyT

1 |Θ) (notice xxx does not appear). That log likelihood is known
as the marginal or expected log likelihood: EX|y log L(yyyT

1 ,xxxT
1 |Θ).

3

This likelihood looks a little different than that in Shumway and Stoffer (2006)
since here, ξ = E[xxx1] not E[xxx0] and thus the second summation is 2 to T rather
than 1 to T . Note that all bolded elements are column vectors (lower case) and
matrices (upper case). A> is the transpose of matrix A, A−1 is the inverse of
A, and |A| is the determinant of A. Parameters are non-italic while elements
that are slanted are realizations of a random variable (xxx and yyy are slated)4

2 The EM algorithm

The algorithm cycles iteratively between an expectation step followed by a max-
imization step.

Expectation step, the expected values of the hidden states conditioned all
the data and on a set of parameters at iteration i, Θ̂i, are computed using the
Kalman smoother5. The output from the Kalman smoother provides

x̃t = EX|y(xxxt|yyyT1 , Θ̂i) (4a)

Ṽt = var(XXXt|yyyT1 , Θ̂i) (4b)

Ṽt,t−1 = cov(XXXt,XXXt−1|yyyT1 , Θ̂i) (4c)

From x̃t, Ṽt, and Ṽt,t−1, we can compute (4d)

P̃t = EX|y(xxxt(xxxt)>|yyyT1 , Θ̂i) = Ṽt + x̃t(x̃t)> (4e)

P̃t,t−1 = EX|y(xxxt(xxxt−1)>|yyyT1 , Θ̂i) = Ṽt,t−1 + x̃t(x̃t−1)> (4f)

The subscript on the expectation, E, denotes that the expectation is taken over
the hidden states, XXX, conditioned on the observed data, yyy. The right sides of
equations (4e) and (4f) arise from the computational formula for variance and
covariance:

var(X) = E(XX>)− E(X) E(X)

cov(X,Y) = E(XY >)− E(X) E(Y)>.

Maximization step: a new parameter set Θ̂j+1 is computed by finding the
parameters that maximize the expected log-likelihood function (see section 2.1)
using x̃t, P̃t and P̃t,t−1 from iteration j. The equations that give the parameters
for the next iteration (j + 1) are called the update equations and this report is
devoted to the derivation of these update equations.

After one iteration of the expectation and maximization steps, the cycle is
then repeated. New x̃t, P̃t and P̃t,t−1 are computed using Θ̂j+1, and then a new

4In matrix algebra, a capitol bolded letter indicates a matrix. Unfortunately in statistics,
the capitol letter convention is used for random variables. Fortunately, this derivation does
not need to reference random variables except indirectly when using expectations. Thus, I
use capitols to refer to matrices not random variables. The one exception is the reference to
XXX and in this case a bolded slanted capitol is used.

5The Kalman smoother gives estimates conditioned on yyyT
1 . It uses the output from the

Kalman filter, which gives yyyt−1
1

4

set of parameters Θ̂j+2 is generated. This cycle is continued until the likelihood
no longer increases more than a specified tolerance level. This algorithm is
guaranteed to increase in likelihood at each iteration (if it does not, it means
there is an error in one’s update equations). The algorithm must be started from
an initial set of parameter values Θ̂1. The algorithm is not particularly sensitive
to the initial conditions but the surface could definitely be multi-modal and have
local maxima. See section 6 on using Monte Carlo initialization to ensure that
the global maximum is found.

2.1 The expected log-likelihood function

The likelihood function that is maximized in the “M” step is the expected log-
likelihood function where the expectation is taken over (XXXT

1 |yyyT1), meaning the
set of all possible hidden states conditioned on all the data. We denote the
expected log-likelihood by Ψ. Using the log likelihood equation (3), Ψ is:

EX|y log L(yyyT1 ,xxx
T
1 |Θ) = Ψ =

− 1
2

T∑
1

(
(yyyt)

>R−1yyyt − EXXX |yyy [(yyyt)
>R−1Zxxxt]− EX|y[(Zxxxt)>R−1yyyt]

− a>R−1yyyt − (yyyt)
>R−1a + EX|y[(Zxxxt)>R−1Zxxxt]

+ EX|y[a>R−1Zxxxt] + EX|y[(Zxxxt)>R−1a] + a>R−1a
)
− T

2
log |R|

− 1
2

T∑
2

(
EX|y[(xxxt)>Q−1xxxt]− EX|y[(xxxt)>Q−1Bxxxt−1]

− EX|y[(Bxxxt−1)>Q−1xxxt]− EX|y[u>Q−1xxxt]− EX|y[(xxxt)>Q−1u]

+ EX|y[(Bxxxt−1)>Q−1Bxxxt−1] + EX|y[u>Q−1Bxxxt−1]

+ EX|y[(Bxxxt−1)>Q−1u] + u>Q−1u
)
− T − 1

2
log |Q|

− 1
2

(
EX|y[(xxx1)>(V1)−1xxx1]− EX|y[ξ>(V1)−1xxx1]

− EX|y[(xxx1)>(V1)−1ξ] + (ξ)>(V1)−1ξ

)
− 1

2
log |V1| −

n

2
log π

(5)

I will reference the expected log-likelihood throughout the derivation of the up-
date equations; it could be written more concisely, but for deriving the update
equations, I will keep it in this long form. The new parameters for the maxi-
mization step are those parameters that maximize the expected log likelihood
Ψ. The equations for these new parameters are termed the update equations.

5

3 The unconstrained update equations

In this section, I show the derivation of the update equations when all elements
of a parameter matrix are estimated and are all allowed to be different; these
are the update equations one will see in Shumway and Stoffer’s text. If some of
the values are fixed or are shared, the derivations are similar but they get more
cluttered. Section 3 shows the general update equations when there are fixed
or shared values in the parameter matrices. The general update equations are
used in the MARSS R package.

To derive the update equations, one must find the parameters values that
maximize Ψ (equation 5) by partial differentiation of Ψ with respect to the
parameter of interest, and then solve for the parameter value that sets the
partial derivative to zero. The partial differentiation is with respect to each
individual parameter element, for example each uj in the vector u. The idea
is to single out those terms in equation (5) that involve uj (say), differentiate
by uj , set this to zero and solve for uj . This gives the new uj that maximizes
the partial derivative with respect to uj of the expected log-likelihood. Matrix
calculus gives us a way to jointly maximize Ψ with respect to all elements (not
just element j) in a parameter vector or matrix.

Deriving the update equations is tedious. However, understanding exactly
how to do it is critical if one wants to develop extensions to the linear MARSS
model. Before commencing, some definitions from matrix derivation will be
needed. The partial derivative of a scalar (Ψ is a scalar) with respect to some
column vector b (which has elements b1, b2 . . .) is

∂Ψ
∂b

=
[
∂Ψ
∂b1

∂Ψ
∂b2

· · · ∂Ψ
∂bn

]
Note that the derivative of a column vector b is a row vector. The partial
derivatives of a scalar with respect to some n× n matrix B is

∂Ψ
∂b

=



∂Ψ
∂b1,1

∂Ψ
∂b2,1

· · · ∂Ψ
∂bn,1

∂Ψ
∂b1,2

∂Ψ
∂b2,2

· · · ∂Ψ
∂bn,2

· · · · · · · · · · · ·

∂Ψ
∂b1,n

∂Ψ
∂b2,n

· · · ∂Ψ
∂bn,n


Note that the indexing is interchanged; ∂Ψ/∂bi,j =

[
∂Ψ/∂B

]
j,i

. For Q and R,
this is unimportant because they are variance-covariance matrices and are sym-
metric. For B and Z, one must be careful because these may not be symmetric.
Table 1 shows matrix differentials that are used in the derivation.

6

Table 1: Derivatives of a scalar with respect to vectors and matrices. In the following
a and c are n × 1 column vectors, b and d are m × 1 column vectors, D is a n ×m
matrix, and C is a n× n matrix. Note, all the numerators in the differentials reduce
to scalars. Both the vectorized and non-vectorized versions are shown; vec is defined
at the bottom of the table.

∂(a>c)/∂a = ∂(c>a)/∂a = c> (6)

∂(a>Db)/∂D = ∂(b>D>a)/∂D = ba> (7)
∂(a>Db)/∂ vec(D) = ∂(b>D>a)/∂ vec(D) =

(
vec(ba>)

)>
∂(log |C|)/∂C = −∂(log |C−1|)/∂C = (C>)−1 = C−>

(8)= C−1 if C is symmetric
∂(log |C|)/∂ vec(C) =

(
vec(C−>)

)>
∂(b>D>CDd)/∂D = db>D>C + bd>D>C>

(9)∂(b>D>CDd)/∂ vec(D) =
(

vec(db>D>C + bd>D>C>)
)>

If b = d and C is symmetric then the sum reduces to 2bb>D>C

∂(a>Ca)/∂a = ∂(aC>a>)/∂a = 2a>C (10)

∂(a>C−1c)/∂C = −C−1ac>C−1

(11)
∂(a>C−1c)/∂ vec(C) = −

(
vec(C−1ac>C−1)

)>
∂f/∂Z = ∂f

∂YYY
∂YYY
∂Z the chain rule (12)

vec(Dn,m) ≡



d1,1

· · ·
dn,1
d1,2

· · ·
dn,2
· · ·
d1,m

· · ·
dn,m


C−1 ≡ inverse of C C−> =

(
C−1

)> =
(
C>
)−1

D> ≡ transpose of D |C| ≡ determinant of C

7

3.1 The update equation for u (unconstrained)

Take the partial derivative of Ψ with respect to u, which is a m × 1 column
vector. All parameters other than u are fixed to constant values (because partial
derivation is being done). Since the derivative of a constant is 0, terms not
involving u will equal 0 and drop out. The subscript, XXX|yyy, on the expectation,
E, has been dropped to remove clutter. Taking the derivative to equation (5)
with respect to u:

∂Ψ/∂u = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1u)/∂u]− E[∂(u>Q−1xxxt)/∂u]

+ E[∂((Bxxxt−1)>Q−1u)/∂u] + E[∂(u>Q−1Bxxxt−1)/∂u]

+ ∂(u>Q−1u)/∂u
) (13)

Using relations (6) and (10) and using Q−1 = (Q−1)>, we have

∂Ψ/∂u = −1
2

T∑
t=2

(
− E[(xxxt)>Q−1]− E[(Q−1xxxt)>]

+ E[(Bxxxt−1)>Q−1] + E[(Q−1Bxxxt−1)>] + 2u>Q−1

) (14)

The parameters can be pulled out of the expectations6 and the −1/2 removed,
giving

∂Ψ/∂u =
T∑
t=2

(
E[(xxxt)>Q−1]− E[(xxxt−1)>]B>Q−1 − u>Q−1

)
(15)

Set the left side to zero (a 1 × m matrix of zeros) and transpose the whole
equation. Q−1 cancels out7 by multiplying on the left by Q (left since the
whole equation was just transposed), giving

0 =
T∑
t=2

(
E[xxxt]−B E[xxxt−1]− u

)
=

T∑
t=2

(
E[xxxt]−B E[xxxt−1]

)
− (T − 1)u (16)

Solving for u and replacing the expectations with the Kalman smoother output,
gives us the new u that maximizes Ψ,

unew =
1

T − 1

T∑
t=2

(
x̃t −Bx̃t−1

)
(17)

6The expectation is an integral over xxx and the parameters are not functions of xxx so they
can be pulled out of the expectations.

7Q is a variance-covariance matrix and is invertable. Q−1Q = I, the identity matrix.

8

3.2 The update equation for B (unconstrained)

Take the derivative of Ψ with respect to B. Terms not involving B, equal 0 and
drop out.

∂Ψ/∂B = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1Bxxxt−1)/∂B]

− E[∂((Bxxxt−1)>Q−1xxxt)/∂B] + E[∂((Bxxxt−1)>Q−1(Bxxxt−1))/∂B]

+ E[∂((Bxxxt−1)>Q−1u)/∂B] + E[∂(u>Q−1Bxxxt−1)/∂B]
)

= −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1Bxxxt−1)/∂B]

− E[∂((xxxt−1)>B>Q−1xxxt)/∂B] + E[∂((xxxt−1)>B>Q−1(Bxxxt−1))/∂B]

+ E[∂((xxxt−1)>B>Q−1u)/∂B] + E[∂(u>Q−1Bxxxt−1)/∂B]
)

(18)

Using relations (7) and (9), we have

∂Ψ/∂B = −1
2

T∑
t=2

(
− E[xxxt−1(xxxt)>Q−1]− E[xxxt−1(xxxt)>Q−1]

+ 2 E[xxxt−1(xxxt−1)>B>Q−1] + E[xxxt−1u>Q−1] + E[xxxt−1u>Q−1]
) (19)

Pulling the parameters out of the expectations and using Q−1 = (Q−1)>, we
have

∂Ψ/∂B = −1
2

T∑
t=2

(
− 2 E[xxxt−1(xxxt)>]Q−1

+ 2 E[xxxt−1(xxxt−1)>]B>Q−1 + 2 E[xxxt−1u>Q−1]
) (20)

Set the left side to zero (an m×m matrix of zeros), cancel out Q−1 by multi-
plying by Q on the right, get rid of the -1/2, and transpose the whole equation
to give

0 =
T∑
t=2

(
E[xxxt(xxxt−1)>]−B E[xxxt−1(xxxt−1)>]− u E[(xxxt−1)>]

)
=

T∑
t=2

(
P̃t,t−1 −BP̃t−1 − u(x̃t−1)>

) (21)

The last line replaced the expectations with the Kalman smoother output from
equation (4). Solving for B and noting that P̃t−1 is like a variance-covariance

9

matrix and is invertable, gives us the new B that maximizes Ψ,

Bnew =
(T∑
t=2

(
P̃t,t−1 − u(x̃t−1)>

))(T∑
t=2

P̃t−1

)−1

(22)

Because all the equations above also apply to block-diagonal matrices, the
derivation immediately generalizes to the case where B is an unconstrained
block diagonal matrix:

B =



b1,1 b1,2 b1,3 0 0 0 0 0
b2,1 b2,2 b2,3 0 0 0 0 0
b3,1 b3,2 b3,3 0 0 0 0 0
0 0 0 b4,4 b4,5 0 0 0
0 0 0 b5,4 b5,5 0 0 0
0 0 0 0 0 b6,6 b6,7 b6,8
0 0 0 0 0 b7,6 b7,7 b7,8
0 0 0 0 0 b8,6 b8,7 b8,8


=

B1 0 0
0 B2 0
0 0 B3



For the block diagonal B,

Bi,new =
(T∑
t=2

(
P̃t,t−1 − u(x̃t−1)>

))
i

(T∑
t=2

P̃t−1

)−1

i

(23)

where the subscript i means to take the parts of the matrices that are analogous
to Bi; take the whole part within the parentheses not the individual matrices
inside the parentheses) . If Bi is comprised of rows a to b and columns c to d of
matrix B, then take rows a to b and columns c to d of the matrices subscripted
by i in equation (23).

3.3 The update equation for Q (unconstrained)

The usual way to do this derivation is to use what is known as the “trace trick”
which will pull the Q−1 out to the left of the c>Q−1b terms which appear in
the likelihood (5). Here I’m showing a less elegant derivation that plods step by
step through each of the likelihood terms. Take the derivative of Ψ with respect
to Q. Terms not involving Q equal 0 and drop out.

∂Ψ/∂Q = −1
2

T∑
t=2

(
E[∂((xxxt)>Q−1xxxt)/∂Q]− E[∂((xxxt)>Q−1Bxxxt−1)/∂Q]

− E[∂((Bxxxt−1)>Q−1xxxt)/∂Q]− E[∂((xxxt)>Q−1u)/∂Q]

− E[∂(u>Q−1xxxt)/∂Q] + E[∂((Bxxxt−1)>Q−1Bxxxt−1)/∂Q]

+ E[∂((Bxxxt−1)>Q−1u)/∂Q] + E[∂(u>Q−1Bxxxt−1)/∂Q]

+ ∂(u>Q−1u)/∂Q
)
− ∂

(
T − 1

2
log |Q|

)
/∂Q

(24)

10

The relations (11) and (8) are used to do the differentiation. Notice that all the
terms in the summation are of the form c>Q−1b, and thus all the c>b terms
can be grouped inside one set of parentheses. Also there is a minus that comes
from equation (11) and it cancels out the minus in front of the initial −1/2.

∂Ψ/∂Q =
1
2

T∑
t=2

Q−1

(
E[xxxt(xxxt)>]− E[xxxt(Bxxxt−1)>]− E[Bxxxt−1(xxxt)>]

− E[xxxtu>]− E[u(xxxt)>] + E[Bxxxt−1(Bxxxt−1)>] + E[Bxxxt−1u>]

+ E[u(Bxxxt−1)>] + uu>
)

Q−1 − T − 1
2

Q−1

(25)

Pulling the parameters out of the expectations and using (Bxxxt)> = (xxxt)>B>,
we have

∂Ψ/∂Q =
1
2

T∑
t=2

Q−1

(
E[xxxt(xxxt)>]− E[xxxt(xxxt−1)>]B> −B E[xxxt−1(xxxt)>]

− E[xxxt]u> − u E[(xxxt)>] + B E[xxxt−1(xxxt−1)>]B> + B E[xxxt−1]u>

+ u E[(xxxt−1)>]B> + uu>
)

Q−1 − T − 1
2

Q−1

(26)

The partial derivative is then rewritten in terms of the Kalman smoother output:

∂Ψ/∂Q =
1
2

T∑
t=2

Q−1

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>

+ BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B>

+ uu>
)

Q−1 − T − 1
2

Q−1

(27)

Setting this to zero (a m × m matrix of zeros), Q−1 is cancelled out by mul-
tiplying by Q twice, once on the left and once on the right and get rid of the
1/2.

0 =
T∑
t=2

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>

+ BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B> + uu>
)
−Q(T − 1)

(28)

We can then solve for Q, giving us the new Q that maximizes Ψ,

Qnew =
1

T − 1

T∑
t=2

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>

+ BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B> + uu>
) (29)

11

This derivation immediately generalizes to the case where Q is a block di-
agonal matrix:

Q =



q1,1 q1,2 q1,3 0 0 0 0 0
q1,2 q2,2 q2,3 0 0 0 0 0
q1,3 q2,3 q3,3 0 0 0 0 0
0 0 0 q4,4 q4,5 0 0 0
0 0 0 q4,5 q5,5 0 0 0
0 0 0 0 0 q6,6 q6,7 q6,8

0 0 0 0 0 q6,7 q7,7 q7,8

0 0 0 0 0 q6,8 q7,8 q8,8


=

Q1 0 0
0 Q2 0
0 0 Q3



In this case,

Qi,new =
1

T − 1

T∑
t=2

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>

+ BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B> + uu>
)
i

(30)

where the subscript i means take the elements of the matrix (in the big paren-
theses) that are analogous to Qi; take the whole part within the parentheses
not the individual matrices inside the parentheses). If Qi is comprised of rows
a to b and columns c to d of matrix Q, then take rows a to b and columns c to
d of matrices subscripted by i in equation (30).

By the way, Q is never really unconstrained since it is a variance-covariance
matrix and the upper and lower triangles are shared. However, because the
shared values are only the symmetric values in the matrix, the derivation still
works even though it’s technically incorrect (Henderson and Searle, 1979). The
constrained update equation for Q explicitly deals with the shared lower and
upper triangles.

3.4 Update equation for a (unconstrained)

Take the derivative of Ψ with respect to a, where a is a n × 1 column vector.
Terms not involving a, equal 0 and drop out.

∂Ψ/∂a = −1
2

T∑
t=1

(
− ∂((yyyt)

>R−1a)/∂a− ∂(a>R−1yyyt)/∂a

+ E[∂((Zxxxt)>R−1a)/∂a] + E[∂(a>R−1Zxxxt)/∂a] + ∂(a>R−1a)/∂a
) (31)

Using relations (6) and (10) and using R−1 = (R−1)>, we have

∂Ψ/∂a = −1
2

T∑
t=1

(
− (yyyt)

>R−1 − (R−1yyyt)
> + E[(Zxxxt)>R−1]

+ E[(R−1Zxxxt)>] + 2a>R−1

) (32)

12

Pull the parameters out of the expectations, use (ab)> = b>a> and R−1 =
(R−1)> where needed, and remove the −1/2 to get

∂Ψ/∂a =
T∑
t=1

(
(yyyt)

>R−1 − E[(xxxt)>]Z>R−1 − a>R−1

)
(33)

Set the left side to zero (a 1×n matrix of zeros), take the transpose, and cancel
out R−1 by multiplying by R, giving

0 =
T∑
t=1

(
yyyt − Z E[xxxt]− a

)
=

T∑
t=1

(
yyyt − Zx̃t − a

)
(34)

Solving for a gives us the update equation for a:

anew =
1
T

T∑
t=1

(
yyyt − Zx̃t

)
(35)

3.5 The update equation for Z (unconstrained)

Take the derivative of Ψ with respect to Z. Terms not involving Z, equal 0 and
drop out.

∂Ψ/∂Z = (note ∂Z is m× n while Z is n×m)

− 1
2

T∑
t=1

(
− E[∂((yyyt)

>R−1Zxxxt)/∂Z]

− E[∂((Zxxxt)>R−1yyyt)/∂Z] + E[∂((Zxxxt)>R−1Zxxxt)/∂Z]

+ E[∂((Zxxxt)>R−1a)/∂Z] + E[∂(a>R−1Zxxxt)/∂B]
)

= −1
2

T∑
t=1

(
− E[∂((yyyt)

>R−1Zxxxt)/∂Z]

− E[∂((xxxt)>Z>R−1yyyt)/∂Z] + E[∂((xxxt)>Z>R−1Zxxxt)/∂Z]

+ E[∂((xxxt)>Z>R−1a)/∂Z] + E[∂(a>R−1Zxxxt)/∂Z]
)

(36)

Using relations (7) and (9) and using R−1 = (R−1)>, we get

∂Ψ/∂Z = −1
2

T∑
t=1

(
− E[xxxt(yyyt)

>R−1]− E[xxxt(yyyt)
>R−1]

+ 2 E[xxxt(xxxt)>Z>R−1] + E[xxxt−1a>R−1] + E[xxxta>R−1]
) (37)

13

Pulling the parameters and yyy out of the expectations, we have

∂Ψ/∂Z = −1
2

T∑
t=1

(
− 2 E[xxxt](yyyt)

>R−1 + 2 E[xxxt(xxxt)>]Z>R−1

+ 2 E[xxxt]a>R−1

) (38)

Set the left side to zero (a m × n matrix of zeros), transpose it all, get rid of
the −1/2, and cancel out R−1 by multiplying by R on the left, to give

0 =
T∑
t=1

(
yyyt E[(xxxt)>]− Z E[xxxt(xxxt)>]− a E[(xxxt)>]

)
=

T∑
t=1

(
yyyt(x̃t)

> − ZP̃t − a(x̃t)>
) (39)

Solving for Z and noting that P̃t is invertable, gives us the new Z that maximizes
Ψ,

Znew =
(T∑
t=1

(
(yyyt − a)(x̃t)>

))(T∑
t=1

P̃t

)−1

(40)

3.6 The update equation for R (unconstrained)

Take the derivative of Ψ with respect to R. Terms not involving R, equal 0 and
drop out.

∂Ψ/∂R = −1
2

T∑
t=1

(
E[∂((yyyt)

>R−1yyyt)/∂R]− E[∂((yyyt)
>R−1Zxxxt)/∂R]

− E[∂((Zxxxt)>R−1yyyt)/∂R]− E[∂((yyyt)
>R−1a)/∂R]

− E[∂(a>R−1yyyt)/∂R] + E[∂((Zxxxt)>R−1Zxxxt)/∂R]

+ E[∂((Zxxxt)>R−1a)/∂R] + E[∂(a>R−1Zxxxt)/∂R]

+ ∂(a>R−1a)/∂R
)
− ∂

(T
2

log |R|
)
/∂R

(41)

We use relations (11) and (8) to do the differentiation. Notice that all the terms
in the summation are of the form c>R−1b, and thus we group all the c>b inside
one set of parentheses. Also there is a minus that comes from equation (11) and
cancels out the minus in front of −1/2.

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
E[yyyt(yyyt)

>]− E[yyyt(Zxxxt)
>]− E[Zxxxt(yyyt)

>]

− E[yyyta
>]− E[a(yyyt)

>] + E[Zxxxt(Zxxxt)>] + E[Zxxxta>] + E[a(Zxxxt)>]

+ aa>
)

R−1 − T

2
R−1

(42)

14

Pulling the parameters and yyy out of the expectations and using (Zyyyt)> =
(yyyt)>Z>, we have

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
yyyt(yyyt)

> − yyyt E[(xxxt)>]Z> − Z E[xxxt](yyyt)
> − yyyta>

− a(yyyt)
> + Z E[xxxt(xxxt)>]Z> + Z E[xxxt]a> + a E[(xxxt)>]Z> + aa>

)
R−1

− T

2
R−1

(43)

We rewrite the partial derivative in terms of the Kalman smoother output:

∂Ψ/∂R =
1
2

T∑
t=1

R−1

(
yyyt(yyyt)

> − yyyt(x̃t)>Z> − Zx̃t(yyyt)
> − yyyta> − a(yyyt)

>

+ ZP̃tZ> + Zx̃ta> + a(x̃t)>Z> + aa>
)

R−1 − T

2
R−1

(44)

Setting this to zero (a n×n matrix of zeros), we cancel out R−1 by multiplying
by R twice, once on the left and once on the right, and get rid of the 1/2.

0 =
T∑
t=1

(
yyyt(yyyt)

> − yyyt(x̃t)>Z> − Zx̃t(yyyt)
> − yyyta> − a(yyyt)

>

+ ZP̃tZ> + Zx̃ta> + a(x̃t)>Z> + aa>
)
− TR

(45)

We can then solve for R, giving us the new R that maximizes Ψ,

Rnew =
1
T

T∑
t=1

(
yyyt(yyyt)

> − yyyt(x̃t)>Z> − Zx̃t(yyyt)
> − yyyta> − a(yyyt)

>

+ ZP̃tZ> + Zx̃ta> + a(x̃t)>Z> + aa>
)

=
1
T

T∑
t=1

(
(yyyt − Zx̃t − a)(yyyt − Zx̃t − a)> + Z(P̃t − x̃t(x̃t)>)Z>

)

=
1
T

T∑
t=1

(
(yyyt − Zx̃t − a)(yyyt − Zx̃t − a)> + ZṼtZ>

)
(46)

As with Q, this derivation immediately generalizes to a block diagonal matrix:

R =

R1 0 0
0 R2 0
0 0 R3



15

In this case,

Ri,new =
1
T

T∑
t=1

(
(yyyt − Zx̃t − a)(yyyt − Zx̃t − a)> + ZṼtZ>

)
i

(47)

where the subscript i means we take the elements in the matrix in the big
parentheses that are analogous to Ri. If Ri is comprised of rows a to b and
columns c to d of matrix R, then we take rows a to b and columns c to d of
matrix subscripted by i in equation (47).

3.7 Update equation for ξ (unconstrained)

Take the derivative of Ψ with respect to ξ . Terms not involving ξ, equal 0 and
drop out.

∂Ψ/∂ξ = −1
2
(
− E[∂((ξ)>(V1)−1xxx1)/∂ξ]− E[∂((xxx1)>(V1)−1ξ)/∂ξ]

+ ∂(ξ>(V1)−1ξ)/∂ξ
) (48)

Using relations (6) and (10) and using (V1)−1 = ((V1)−1)>, we have

∂Ψ/∂ξ = −1
2
(
− E[(xxx1)>(V1)−1]− E[(xxx1)>(V1)−1] + 2ξ>(V1)−1

)
(49)

Pulling the parameters out of the expectations, we get

∂Ψ/∂ξ = −1
2
(
− 2 E[(xxx1)>](V1)−1 + 2ξ>(V1)−1

)
(50)

We then set the left side to zero, take the transpose, and cancel out −1/2 and
(V1)−1 (by noting that it is a variance-covariance matrix and is invertable).

0 =
(
(V1)−1 E[xxx1] + (V1)−1ξ

)
= (x̃1 − ξ) (51)

Thus,
ξnew = x̃1 (52)

4 Missing values modifications

Because the update equations for Z, a and R involve yyy, they must be mod-
ified when there are missing values in yyy. The modifications are tedious but
straight-forward; see Shumway and Stoffer (2006, sec. 6.4) and Zuur et al.
(2003, appendix) for more examples of this computation. The steps may seem
a bit complex, but they are simple to code since you merely need to define a
series of permutation matrices, Ω, Ω(1), and Ω(2), defined below. Then the
missing values modification consists of matrix multiplications involving these
permutation matrices. The basic logic behind these modifications is that the

16

update equation for a parameter (with or without missing values in yyy) consists
of a summation over the T time steps in the data:

Mnew =
1
T

T∑
t=1

Mt,new, (53)

where M is Z, a or R. The missing values modification consists of an algorithm
for computing each Mt,new.

Before going into each parameter separately, the permutation matrices are
defined. Let yyy(1)

t be the set of non-missing yyyt values and yyy
(2)
t be the set of

missing values (which will be set to zeros8). For example,

yyyt =


y1

NA
y3

y4

NA
y6

 , yyy
(1)
t =


y1

y3

y4

y6

 , yyy
(2)
t =

[
0
0

]
(54)

Here NA means missing. Let Ω be a n×n permutation matrix that turns yyyt into[
yyy(1)

t

yyy(2)
t

]
, which we will call yyy∗t . Note that there is a different Ω for each different

time step since the number and location of missing values can be different in
different time steps. For the example above,

yyy∗t =

[
yyy

(1)
t

yyy
(2)
t

]
= Ωyyyt, Ω =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0

 (55)

Let Ω(1) be the permutation matrix that extracts only yyy(1)
t from yyyt and Ω(2) be

the matrix that extracts only yyy(2)
t . For the example above,

yyy
(1)
t = Ω(1)yyyt, Ω(1) =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


yyy

(2)
t = Ω(2)yyyt, Ω(2) =

[
0 1 0 0 0 0
0 0 0 0 1 0

] (56)

Note that in the modified update equations, the Kalman smoother outputs
x̃t and Ṽt appear. These are the missing values modified Kalman filter and
smoother output (Shumway and Stoffer, 2006, sec. 6.4, p. 348).

8In your code, you will need to distinguish between missing values that have been replaced
by zeros and non-missing values that equal zero. Typically, one constructs a diagonal n × n
missing value matrix for each time step where 1 at position i, i means not missing and 0 means
missing. Then you can use this matrix in your Kalman filter and smoother.

17

4.1 Modifications for a

The modification for a is simple and consists of the following. If the i-th value
of yyy is missing at time t then the i-th value of a from the previous iteration
of the EM algorithm, aj , is used in place of the i-th value of (yyyt − Zx̃t) in the
summation at time t. Using the permutation matrices, this is written as:

a∗t,new =
[
Ω(1)

(
yyyt − Zx̃t

)
Ω(2)aj

]
(57)

Then we permute a∗t,new back to at,new:

at,new = Ω>a∗t,new (58)

This gives an algorithm to compute at,new, and this is used to step through
one’s dataset from 1 to T to compute the updated a for EM iteration j + 1:

anew =
1
T

T∑
t=1

at,new (59)

4.2 Modifications for R

Similarly to yyy∗t , we can define R∗ which is an R matrix where we have put the
part associated with the covariances of yyy(1)

t into the top corner of the matrix,
the part associated with the covariance of yyy(1)

t and yyy(2)
t into the bottom corner,

etc.

R∗ =
[
R(11) R(12)

R(21) R(22)

]
= ΩRΩ> (60)

We will compute a permuted version of the update equation at time t, R∗t,new,
using separate computations for each of these four parts of the R matrix.

The update equation for R(11) is

R(11)
t,new = χ = Ω(1)

(
(yyyt − Zx̃t − a)(yyyt − Zx̃t − a)> + ZṼtZ>

)
(Ω(1))> (61)

It is given here the symbol χ since it is used below in the next update equations.
You may recognize χ from the update equation with no missing values (equation
46), but wrapped in the Ω(1) permutation matrix and its transpose. Note that
since the missing values in yyyt have been replaced by zeros there is no problem
doing the computation and the x̃t and Ṽt terms are from the missing values
modified Kalman smoother (Shumway and Stoffer, 2006, sec. 6.4). The update
equations for R(12), R(21) and R(22) are different because the “2” part of the
matrix is the part corresponding to the missing values in yyyt. Recall that Rj is
the estimate of R at the last EM iteration, and we are trying to compute Rj+1,
the new, updated, R estimate for the j + 1 EM iteration. The update equation
for R(12), R(21) and R(22) in Rj+1 will involve the Rj values9.

9In the code, you are simply using the R estimate from the last EM iteration

18

Define

Γ = R(21)
j

(
R(11)
j

)−1 = Ω(2)Rj(Ω(1))>
(

Ω(1)Rj(Ω(1))>
)−1

(62)

The update equation for R(22) is

R(22)
t,new = R(22)

j − ΓR(12)
j + ΓχΓ>, (63)

where R(22)
j = Ω(2)Rj(Ω(2))> and R(12)

j = Ω(1)Rj(Ω(2))>. The update equa-
tion for R(12) is

R(12)
t,new = Γχ (64)

Putting these altogether, the missing values modified update equation at
time step t is

R∗t,new =

R(11)
t,new R(12)

t,new

R(21)
t,new R(22)

t,new

 =

 χ χΓ>

Γχ R(22)
j − ΓR(12)

j + ΓχΓ>

 (65)

If yyyt is all missing values, R∗t,new just reduces to Rj . If no values are missing in
yyyt, R∗t,new reduces to χ.

R∗t,new is a permuted R matrix, and we want to then put the elements back
into their normal positions10 to give Rt,new:

Rt,new = Ω>R∗t,newΩ (66)

Now we have an algorithm to compute Rt,new and this is used to step through
one’s dataset from 1 to T to compute

Rnew =
1
T

T∑
t=1

Rt,new (67)

4.3 Modifications for Z

The modification for Z involves replacing the yyyt(x̃t)> term that appears inside
the first summation in equation (40) with a modified version that deals with
any missing values in yyyt (Zuur et al., 2003). Rewrite equation (40) as

Znew =
(T∑
t=1

Ht

)(T∑
t=1

P̃t

)−1

. (68)

If there are no missing values case, Ht = yyyt(x̃t)>− a(x̃t)>, and this is equation
(40).

10A property of permutation matrices is that ΩΩ> = I, thus we can easy permute back
and forth between R and R∗ and back using only Ω.

19

If there are missing values at time t, then we will replace the yyyt(x̃t)> term
with a modified term as follows. Define

(
yyyt(x̃t)>

)∗ as(
yyyt(x̃t)

>)∗ = Ω(1)yyyt(x̃t)>(
Ω(2)(Zjx̃t + a) + ΓΩ(1)(yyyt − Zjx̃t − a)

)
(x̃t)> + (Ω(2) − κΩ(1))ZjṼt

 ,
(69)

where Γ is defined in equation (62). We then replace the yyyt(x̃t)> term that
appears in the unconstrained update equation (40) with Ω>

(
yyyt(x̃t)>

)∗. The
Ω> permutes the the elements back to their normal places. Ht when there are
missing values is then

Ht = Ω>
(
yyyt(x̃t)

>)∗ − a(x̃t)>. (70)

If yyyt is all missing values, then Ht reduces to

Ht = ZjP̃t. (71)

If yyyt has no missing values, then Ht reduces to

Ht = yyyt(x̃t)
> − a(x̃t)>. (72)

One then steps through the dataset from 1 to T , computing Ht anew at each
step. These Ht are then used in equation (68) to give Znew.

5 The constrained update equations

The previous sections dealt with the case where all the elements in a parameter
matrix are estimated. In this section, I deal with the case where some of the
elements are constrained, for example when some elements are fixed values and
some elements are shared (meaning they are forced to have the same value). One
cannot simply use the elements from the unconstrained case for the free elements
because the solution depends on the fixed values; those have to be included in
the solution. One could always go through each matrix element one-by-one, but
that would be very slow since the Kalman smoother would need to be run after
updating each matrix element. Rather one would like to find a simultaneous
solution for all the free elements in one’s constrained parameter matrix.

Let’s say we have some parameter matrix M (here M could be any of the
parameters in the MARSS model) with fixed, shared and unshared elements:

M =

 a 0.9 c
−1.2 a 0

0 c b



20

The matrix M can be rewritten in terms of a fixed and free part, where in the
fixed part all free elements are set to zero and in the free part all fixed elements
are set to zero:

M =

 0 0.9 0
−1.2 0 0

0 0 0

+

a 0 c
0 a 0
0 c b

 = Mfixed + Mfree

The vec function turns any matrix into a column vector by stacking the columns
on top of each other. Thus,

vec(M) =



a
−1.2

0
0.9
a
c
c
0
b


We can now write vec(M) as a linear combination of f = vec(Mfixed) and
Dm = vec(Mfree). m is a p× 1 column vector of the p free values, in this case
p = 3 and the free values are a, b, c. D is a design matrix that translates m into
vec(Mfree). For example,

vec(M) =



a
−1.2

0
0.9
a
c
c
0
b


=



0
−1.2

0
0.9
0
0
0
0
0


+



1 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 1
0 0 1
0 0 0
0 1 0



ab
c

 = f + Dm

The derivation proceeds by rewriting the likelihood as a function of vec(M),
where M is whatever parameter matrix for which one is deriving the update
equation. Then one rewrites that as a function of m using the relationship
vec(M) = f + Dm. Finally, one finds the m that sets the derivative of Ψ with
respect to m to zero. Conceptually, the algebraic steps in the derivation are
similar to those in the unconstrained derivation. Thus, I will leave out most of
the intermediate steps. The derivations require a few new matrix algebra and
vec relationships shown in Table 2.

5.1 The general u update equations

Since u is already a column vector, it can be rewritten simply as u = fu+Duυυυ,
where υυυ is the column vector of estimated parameters in u. We then solve

21

Table 2: Kronecker and vec relations. Here A is n ×m, B is m × p, C is p × q. a is
a m× 1 column vector and b is a p× 1 column vector. The symbol ⊗ stands for the
Kronecker product: A ⊗C is a np ×mq matrix. The identity matrix, In, is a n × n
diagonal matrix with ones on the diagonal.

vec(a) = vec(a>) = a (73)The vec of a column vector (or its transpose) is itself.

vec(Aa) = (a> ⊗ In) vec(A) = Aa (74)vec(Aa) = Aa since Aa is itself an m× 1 column vector.

vec(AB) = (Ip ⊗A) vec(B) = (B> ⊗ In) vec(A) (75)

vec(ABC) = (C> ⊗A) vec(B) (76)

(A⊗B)(C⊗D) = (AC⊗BD) (77)

(a⊗ Ip)C = (a⊗C) (78)
C(a> ⊗ Iq) = (a> ⊗C)

(a⊗ Ip)C(b> ⊗ Iq) = (ab> ⊗C) (79)

(a⊗ a) = vec(aa>) (80)(a> ⊗ a>) = (a⊗ a)> = (vec(aa>))>

22

for ∂Ψ/∂υυυ by replacing u with u = fu + Duυυυ in the expected log likelihood
function. In the derivation below, the u subscripts on f and D have been left
off to remove clutter.

∂Ψ/∂υυυ = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1(f + Dυυυ))/∂υυυ]

− E[∂((f + Dυυυ)>Q−1xxxt)/∂υυυ] + E[∂((Bxxxt−1)>Q−1(f + Dυυυ))/∂υυυ]

+ E[∂((f + Dυυυ)>Q−1Bxxxt−1)/∂υυυ] + ∂((f + Dυυυ)>Q−1(f + Dυυυ))/∂υυυ
) (81)

The terms involving only f drop out (because they don’t involve υυυ). This gives

∂Ψ/∂υυυ = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1Dυυυ)/∂υυυ]− E[∂((Dυυυ)>Q−1xxxt)/∂υυυ]

+ E[∂((Bxxxt−1)>Q−1Dυυυ)/∂υυυ] + E[∂((Dυυυ)>Q−1Bxxxt−1)/∂υυυ]

+ ∂(f>Q−1Dυυυ)/∂υυυ + ∂((Dυυυ)>Q−1f)/∂υυυ + ∂((Dυυυ)>Q−1Dυυυ)/∂υυυ
) (82)

Using the matrix differentiation relations in Table 1, we get

∂Ψ/∂υυυ = −1
2

T∑
t=2

(
− 2 E[(xxxt)>Q−1D] + 2 E[(Bxxxt−1)>Q−1D]

+ 2f>Q−1D + 2υυυ>D>Q−1D
) (83)

Set the left side to zero and transpose the whole equation. Then we solve for υυυ.

0 =
T∑
t=2

(
D>Q−1(E[xxxt]−B E[xxxt−1]− f)−D>Q−1Dυυυ

)
(84)

Thus,

(T − 1)D>Q−1Dυυυ = D>Q−1
T∑
t=2

(
E[xxxt]−B E[xxxt−1]− f

)
(85)

Thus, the updated υυυ is

υυυnew =
1

T − 1
(
D>Q−1D

)−1
D>Q−1

T∑
t=2

(
x̃t −Bx̃t−1 − f

)
(86)

and
unew = f + Dυυυnew, (87)

where f = fu and D = Du.
If Q is diagonal or the fixed values are all 0, this will reduce computing the

shared free elements in u by averaging over their values in the unconstrained u
update matrix (equation 17.

23

5.2 The general a update equation

The derivation of the update equation for a with fixed and shared values is
completely analogous to the derivation for u. If a = fa + Daααα, where ααα is a
column vector of the estimated values then (with the a subscripts left of D and
f)

αααnew =
1
T

(
D>R−1D

)−1
D>R−1

T∑
t=1

(
yyyt − Zx̃t − f

)
(88)

The new a parameter is then

anew = f + Dαααnew, (89)

where f = fa and D = Da.
If R is diagonal or the fixed values are all 0, this will reduce just updating the

free elements in a using their values from the unconstrained update equation.
The modification for missing values follows the unconstrained case. Specifically,
when yi,t is missing, the aiold value is used for the i-th value of (yyyt − Zx̃t) at
time t.

5.3 The general ξ update equation

The derivation of the update equation for ξ with fixed and shared values is
similar to the derivation for u and a. If ξ = fξ + Dξp, where p is a column
vector of the estimated values then (with the ξ subscript left off D and f)

∂Ψ/∂p =
(
(x̃1)>(V1)−1 − ξ>(V1)−1

)
D (90)

Replace ξ with f + Dp, set the left side to zero and transpose:

0 = D>
(
(V1)−1x̃1 − (V1)−1f + (V1)−1Dp

)
(91)

Thus,
pnew =

(
D>(V1)−1D

)−1
D>(V1)−1(x̃1 − f) (92)

and the new ξ is then,
ξnew = f + Dpnew, (93)

where f = fξ and D = Dξ.

5.4 The general B update equation

The matrix B is rewritten as B = Bfixed +Bfree, thus vec(B) = f b+Dbβββ, where
βββ is the p × 1 column vector of the p estimated values, f b = vec(Bfixed) and
Dbβββ = vec(Bfree). Take the derivative of Ψ with respect to βββ; terms in Ψ that

24

do not involve B also do not involve βββ so they will equal 0 and drop out.

∂Ψ/∂βββ = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1Bxxxt−1)/∂βββ]

− E[∂((Bxxxt−1)>Q−1xxxt)/∂βββ] + E[∂((Bxxxt−1)>Q−1(Bxxxt−1))/∂βββ]

+ E[∂((Bxxxt−1)>Q−1u)/∂βββ] + E[∂(u>Q−1Bxxxt−1)/∂βββ]
) (94)

This needs to be rewritten as a function of βββ instead of B. Note that Bxxxt−1 is
a column vector and use relation (74) to show that:

Bxxxt−1 = vec(Bxxxt−1) = Kb vec(B) = Kb(f b + Dbβββ),

where Kb = ((xxxt−1)> ⊗ I)
(95)

Thus, ∂Ψ/∂βββ becomes (the b subscripts are left off K, F and D to remove
clutter):

∂Ψ/∂βββ = −1
2

T∑
t=2

(
− E[∂((xxxt)>Q−1K(f + Dβββ))/∂βββ]

− E[∂((K(f + Dβββ))>Q−1xxxt)/∂βββ]

+ E[∂((K(f + Dβββ))>Q−1(K(f + Dβββ)))/∂βββ]

+ E[∂((K(f + Dβββ))>Q−1u)/∂βββ] + E[∂(u>Q−1K(f + Dβββ))/∂βββ]
)

(96)

After a bit of matrix algebra and remembering that ∂(a>c)/∂a = ∂(c>a)/∂a,
equation (6), and that partial derivatives of constants equal 0, the above can be
simplified to

∂Ψ/∂βββ = −1
2

T∑
t=2

(
− 2 E[∂((xxxt)>Q−1KDβββ)/∂βββ]

+ 2 E[∂((Kf)>Q−1KDβββ)/∂βββ]

+ E[∂(βββ>(KD)>Q−1(KD)βββ)/∂βββ] + 2 E[∂(u>Q−1KDβββ)/∂βββ]
) (97)

Using relations (6) and (10), using Q−1 = (Q−1)>, and getting rid of the −1/2,
we have

∂Ψ/∂βββ =
T∑
t=2

(
E[(xxxt)>Q−1KD]− E[(Kf)>Q−1KD]

+ E[βββ>(KD)>Q−1(KD)]− E[u>Q−1KD]
) (98)

25

The left side can be set to 0 (a 1×p matrix) and the whole equation transposed,
giving:

0 =
T∑
t=2

(
E[(KD)>Q−1xxxt]− E[(KD)>Q−1Kf]

+ E[(KD)>Q−1(KD)]βββ − E[(KD)>Q−1u]
) (99)

Replacing K with ((xxxt−1)> ⊗ I), we have

0 =
T∑
t=2

(
E[(((xxxt−1)> ⊗ I)D)>Q−1xxxt]

− E[(((xxxt−1)> ⊗ I)D)>Q−1((xxxt−1)> ⊗ I)f]

+ E[(((xxxt−1)> ⊗ I)D)>Q−1((xxxt−1)> ⊗ I)D]βββ

− E[(((xxxt−1)> ⊗ I)D)>Q−1u]
)

(100)

This looks daunting, but using relation (74) and noting that (A⊗B)> = (A>⊗
B>), we can simplify equation (100) using the following:

((xxxt−1)> ⊗ I)Q−1u = (xxxt−1 ⊗ I)Q−1u

= (xxxt−1 ⊗ I) vec(Q−1u), because vec(Q−1u)is a column vector

= vec(Q−1u(xxxt−1)>),using relation (74)

Similarly,
((xxxt−1)> ⊗ I)Q−1xxxt = vec(Q−1xxxt(xxxt−1)>)

Using relation (79):

(xxxt−1 ⊗ Im)>Q−1((xxxt−1)> ⊗ Im)f = (xxxt−1(xxxt−1)> ⊗Q−1)f

Similarly,

(xxxt−1 ⊗ I)>Q−1((xxxt−1)> ⊗ I)Dβββ = (xxxt−1(xxxt−1)> ⊗Q−1)Dβββ

Using these simplifications in equation (100), we get

0 =
T∑
t=2

(
E[D> vec(Q−1xxxt(xxxt−1)>)]− E[D>(xxxt−1(xxxt−1)> ⊗Q−1)f]

− E[D>(xxxt−1(xxxt−1)> ⊗Q−1)D]βββ − E[D> vec(Q−1u(xxxt−1)>)]
) (101)

Replacing the expectations with the Kalman smoother output, we arrive at:

0 =
T∑
t=2

(
D> vec(Q−1P̃t,t−1)−D>(P̃t−1 ⊗Q−1)f

−D>(P̃t−1 ⊗Q−1)Dβββ −D> vec(Q−1u(x̃t−1)>)
) (102)

26

Solving for βββ,

βββnew =
(T∑
t=2

D>(P̃t−1 ⊗Q−1)D
)−1

D>
(T∑
t=2

(
vec(Q−1P̃t,t−1)

− (P̃t−1 ⊗Q−1)f − vec(Q−1u(x̃t−1)>)
)) (103)

This requires that (D>(P̃t−1⊗Q−1)D) is invertable, which it is because it is a
p× p diagonal matrix with only non-zero values on the diagonal.

Combining βββnew with Bfixed, we arrive at the vec of the updated B matrix:

vec(Bnew) = f + Dβββnew, (104)

where f = f b and D = Db throughout. When there are no fixed or shared
values, Bfixed equals zero and Db equals an identity matrix. Equation (103) then
reduces to the unconstrained form. To see this take the vec of the unconstrained
update equation for B and notice that Q−1 can be then factored out.

5.5 The general Z update equation

The derivation of the update equation for Z with fixed and shared values is
analogous to the derivation for B. The matrix Z is rewritten as Z = Zfixed +
Zfree, thus vec(Z) = fz + Dzζζζ, where ζζζ is the column vector of the p estimated
values, fz = vec(Zfixed) and Dzζζζ = vec(Zfree). With the z subscript dropped
off D and f , the update equation for Z is

ζζζnew =
(T∑
t=1

(D>(P̃t ⊗R−1)D)
)−1

D>
(T∑
t=1

(
vec(R−1yyyt(x̃t)

>)

− (P̃t ⊗R−1)f − vec(R−1a(x̃t)>)
)) (105)

Combining ζζζnew with Zfixed, we arrive at the vec of the updated Z matrix:

vec(Znew) = f + Dζζζnew (106)

When there are missing values in yyyt, then at time step t, yyyt(x̃t)> in the
second summation is replaced by Ω>

(
yyyt(x̃t)>

)∗, where Ω and
(
yyyt(x̃t)>

)∗ are
defined in the section describing the missing values modifications for Z (section
4.3).

5.6 The general Q update equation

A general analytical solution for fixed and shared elements in Q is problematic
because the inverse of Q appears in the likelihood and because Q−1 cannot
always be rewritten as a function of vec(Q). It might be an option to use nu-
merical maximization of ∂Ψ/∂qi,j where qi,j is a free element in Q, but this will

27

slow down the algorithm enormously. However, in a few important special—yet
quite broad— cases, an analytical solution can be derived. The most general of
these special cases is a block-symmetric matrix with optional independent fixed
blocks (subsection 5.6.5). Indeed, all other cases (diagonal, block-diagonal, un-
constrained, equal variance-covariance) except one (a replicated block-diagonal)
are special cases of the blocked matrix with optional independent fixed blocks.

The general update equation is

qqqnew =
1

T − 1
(D>q Dq)−1D>q vec(S)

vec(Q)new = fq + Dqqqqnew

where S =
T∑
t=2

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>+

BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B> + uu>
)

(107)

where fq, Dq, and qqq have their standard definitions (section 5). The vec of Q is
written in the form of vec(Q) = fq + Dqqqq, where fq is a m2 × 1 column vector
of the fixed values including zero, Dq is the m2 × p design matrix, and qqq is a
column vector of the p free values. Below I show how the Q update equation
arises by working through a few of the special cases.

5.6.1 Special case: diagonal Q matrix (with shared or unique pa-
rameters)

Let Q be some diagonal matrix with fixed and shared values. For example,

Q =


q1 0 0 0 0
0 f1 0 0 0
0 0 q2 0 0
0 0 0 f2 0
0 0 0 0 q2


Here, f ’s are fixed values (constants) and q’s are free parameters elements. The
vec of Q−1 can be written then as vec(Q−1) = f∗q + Dqq

∗q∗q∗, where f∗ is like fq
but with the corresponding i-th non-zero fixed values replaced by 1/fi and q∗q∗q∗

is a column vector of 1 over the qi values. For the example above,

q∗q∗q∗ =
[
1/q1

1/q2

]
Take the partial derivative of Ψ with respect to q∗q∗q∗. We can do this because

Q−1 is diagonal and thus each element of q∗q∗q∗ is independent of the other elements;
otherwise we would not necessarily be able to vary one element of q∗q∗q∗ while

28

holding the other elements constant.

∂Ψ/∂q∗q∗q∗ = −1
2

T∑
t=2

∂

(
E[(xxxt)>Q−1xxxt]− E[(xxxt)>Q−1Bxxxt−1]

− E[(Bxxxt−1)>Q−1xxxt]− E[(xxxt)>Q−1u]

− E[u>Q−1xxxt] + E[(Bxxxt−1)>Q−1Bxxxt−1]

+ E[(Bxxxt−1)>Q−1u] + E[u>Q−1Bxxxt−1] + u>Q−1u
)
/∂q∗q∗q∗

− ∂
(T − 1

2
log |Q|

)
/∂q∗q∗q∗

(108)

Using the same vec operations as in the derivations for B and Z, pull Q−1

out from the middle and replace the expectations with the Kalman smoother
output.11

∂Ψ/∂q∗q∗q∗ = −1
2

T∑
t=2

∂

(
E[((xxxt)> ⊗ (xxxt)>)]− E[((xxxt)> ⊗ (Bxxxt−1)>)]

− E[((Bxxxt−1)> ⊗ (xxxt)>)]− E[((xxxt)> ⊗ (u)>)]

− E[(u> ⊗ (xxxt)>)] + E[((Bxxxt−1)> ⊗ (Bxxxt−1)>)]

+ E[((Bxxxt−1)> ⊗ (u)>)] + E[(u> ⊗ (Bxxxt−1)>)] + (u> ⊗ u>)
)

vec(Q−1)/∂q∗q∗q∗

− ∂
(T − 1

2
log |Q|

)
/∂q∗q∗q∗

= −1
2

T∑
t=2

∂
(

vec(S)>
)

vec(Q−1)/∂q∗q∗q∗ + ∂
(T − 1

2
log |Q−1|

)
/∂q∗q∗q∗

where S =
T∑
t=2

(
P̃t − P̃t,t−1B> −BP̃t−1,t − x̃tu> − u(x̃t)>+

BP̃t−1B> + Bx̃t−1u> + u(x̃t−1)>B> + uu>
)

(109)

Note, I have replaced log |Q| with − log |Q−1|. The determinant of a diagonal
matrix is the product of its diagonal elements. Thus,

∂Ψ/∂q∗q∗q∗ = −
(

1
2

vec(S)>(f∗ + Dq∗q∗q∗)

− T − 1
2

(log(f∗1) + log(f∗2)...k log(q∗1) + l log(q∗2)...)
)
/∂q∗q∗q∗

(110)

11Another, more common, way to do this is to use a “trace trick”, trace(a>Ab) =
trace(Aba>), to pull Q−1 out.

29

where k is the number of times q1 appears on the diagonal of Q and l is the
number of times q2 appears, etc. Taking the derivatives,

∂Ψ/∂q∗q∗q∗ ==
1
2
D> vec(S)− T − 1

2
(log(f∗1) + ...k log(q∗1) + l log(q∗2)...)/∂q∗q∗q∗

=
1
2
D> vec(S)− T − 1

2
D>Dqqq

(111)

D>D is a p× p matrix with k, l, etc. along the diagonal and thus is invertable;
as usual, p is the number of free elements in Q. Set the left side to zero (a 1× p
matrix of zeros) and solve for qqq. This gives us the update equation for Q:

qqqnew =
1

T − 1
(D>D)−1D> vec(S)

vec(Q)new = f + Dqqqnew

(112)

where S is defined in equation (109) and, as usual, D and f are the parameter
specific matrices. In this case, D = Dq and f = fq.

5.6.2 Special case: Q with one variance and one covariance

Q =


α β β β
β α β β
β β α β
β β β α

 Q−1 =


f(α, β) g(α, β) g(α, β) g(α, β)
g(α, β) f(α, β) g(α, β) g(α, β)
g(α, β) g(α, β) f(α, β) g(α, β)
g(α, β) g(α, β) g(α, β) f(α, β)


This is a matrix with a single shared variance parameter on the diagonal and a
single shared covariance on the off-diagonals. The derivation is the same as for
the diagonal case, until the step involving the differentiation of log |Q−1|:

∂Ψ/∂q∗q∗q∗ = ∂

(
− 1

2

T∑
t=2

(
vec(S)>

)
vec(Q−1) +

T − 1
2

log |Q−1|
)
/∂q∗q∗q∗ (113)

It does not make sense to take the partial derivative of log |Q−1| with respect to
vec(Q−1) because many elements of Q−1 are shared so it is not possible to fix
one element while varying another. Instead, we can take the partial derivative of
log |Q−1| with respect to g(α, β) which is

∑
{i,j}∈setg

∂ log |Q−1|/∂q∗q∗q∗i,j . Set g is
those i, j values where q∗q∗q∗ = g(α, β). Because g() and f() are different functions
of both α and β, we can hold one constant while taking the partial derivative
with respect to the other (well, presuming there exists some combination of α
and β that would allow that). But if we have fixed values on the off-diagonal,
this would not be possible. In this case (see below), we cannot hold g() constant
while varying f() because both are only functions of α:

Q =


α f f f
f α f f
f f α f
f f f α

 Q−1 =


f(α) g(α) g(α) g(α)
g(α) f(α) g(α) g(α)
g(α) g(α) f(α) g(α)
g(α) g(α) g(α) f(α)


30

Taking the partial derivative of log |Q−1| with respect to q∗q∗q∗ =
[f(α,β)
g(α,β)

]
, we

arrive at the same equation as for the diagonal matrix:

∂Ψ/∂q∗q∗q∗ =
1
2
D> vec(S)− T − 1

2
D>Dqqq (114)

where again D>D is a p× p diagonal matrix with the number of times f(α, β)
appears in element (1, 1) and the number of times g(α, β) appears in element
(2, 2) of D; p = 2 here since there are only 2 free parameters in Q.

Setting to zero and solving for q∗q∗q∗ leads to the exact same update equation
as for the diagonal Q, namely equation (112) in which fq = 0 since there are no
fixed values.

5.6.3 Special case: a block-diagonal matrices with replicated blocks

Because these operations extend directly to block-diagonal matrices, all results
for individual matrix types can be extended to a block-diagonal matrix with
those types:

Q =

B1 0 0
0 B2 0
0 0 B3


where Bi is any of the allowed matrix types, such as unconstrained, diagonal
(with fixed or shared elements), or equal variance-covariance. Blocks can also
be shared:

Q =

B1 0 0
0 B2 0
0 0 B2


but notice the entire block must be identical (B2 ≡ B3); one cannot simply share
individual elements in different blocks. Either all the elements in two (or 3, or
4...) blocks are shared or none are shared.

This is ok: 
c d d 0 0 0
d c d 0 0 0
d d c 0 0 0
0 0 0 c d d
0 0 0 d c d
0 0 0 d d c


This is not ok: 

c d d 0 0
d c d 0 0
d d c 0 0
0 0 0 c d
0 0 0 d c

 nor


c d d 0 0 0
d c d 0 0 0
d d c 0 0 0
0 0 0 c e e
0 0 0 e c e
0 0 0 e e c



31

The first is bad because the blocks are not identical; they need the same dimen-
sions as well as the same values. The second is bad because again the blocks
are not identical; all values must be the same.

5.6.4 Special case: a symmetric blocked matrix

The same derivation translates immediately to blocked symmetric Q matrices
with the following form:

Q =

 E1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3


where the E are as above matrices with one value on the diagonal and another
on the off-diagonals (no zeros!). The C matrices have only one free value or
are all zero. Some C matrices can be zero while are others are non-zero, but a
individual C matrix cannot have a combination of free values and zero values;
they have to be one or the other. Also the whole matrix must stay block
symmetric. Additionally, there can be shared E or C matrices but the whole
matrix needs to stay block-symmetric. Here are the forms that E and C can
take:

Ei =


α β β β
β α β β
β β α β
β β β α

 Ci =


χ χ χ χ
χ χ χ χ
χ χ χ χ
χ χ χ χ

 or


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


The following are block-symmetric: E1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

 and

E C C
C E C
C C E



and

 E1 C1 C1,2

C1 E1 C1,2

C1,2 C1,2 E2


The following are NOT block-symmetric: E1 C1,2 0

C1,2 E2 C2,3

0 C2,3 E3

 and

E1 0 C1

0 E1 C2

C1 C2 E2

 and

 E1 0 C1,2

0 E1 C1,2

C1,2 C1,2 E2



and

 U1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3

 and

 D1 C1,2 C1,3

C1,2 E2 C2,3

C1,3 C2,3 E3


In the first row, the matrices have fixed values (zeros) and free values (covari-
ances) on the same off-diagonal row and column. That is not allowed. If there

32

is a zero on a row or column, all other terms on the off-diagonal row and column
must be also zero. In the second row, the matrix is not block-symmetric since
the upper corner is an unconstrained block (U1) in the left matrix and diagonal
block (D1) in the right matrix instead of a equal variance-covariance matrix (E).

5.6.5 The general case: a block-diagonal matrix with general blocks

In it’s most general form, Q is allowed to have a block-diagonal form where the
blocks, here called G are any of the previous allowed cases. No shared values
across G’s; shared values are allowed within G’s.

Q =

G1 0 0
0 G2 0
0 0 G3


The G’s must be one of the special cases listed above: unconstrained, diag-
onal (with fixed or shared values), equal variance-covariance, block diagonal
(with shared or unshared blocks), and block-symmetric (with shared or un-
shared blocks). Fixed blocks are allowed, but then the covariances with the free
blocks must be zero:

Q =


F 0 0 0
0 G1 0 0
0 0 G2 0
0 0 0 G3


Fixed blocks must have only fixed values (zero is a fixed value) but the fixed
values can be different from each other. The free blocks must have only free
values (zero is not a free value).

5.7 The general R update equation

The R update equation for blocked symmetric matrices with optional indepen-
dent fixed blocks is completely analogous to the Q equation. Thus if R has the
form

R =


F 0 0 0
0 G1 0 0
0 0 G2 0
0 0 0 G3


Again the G’s must be one of the special cases listed above: unconstrained,
diagonal (with fixed or shared values), equal variance-covariance, block diagonal
(with shared or unshared blocks), and block-symmetric (with shared or unshared
blocks). Fixed blocks are allowed, but then the covariances with the free blocks
must be zero

The update equation is

ρρρnew =
1
T

(D>r Dr)−1D>r vec
(T∑
t=1

Rt,new

)
vec(R)new = fr + Drρρρnew

(115)

33

If there are no missing values in yyyt, then Rt,new used at time step t in equation
(115) is the term that appears in the summation in the unconstrained update
equation with no missing values (equation 46):

Rt,new = (yyyt − Zx̃t − a)(yyyt − Zx̃t − a)> + ZṼtZ> (116)

If there are missing values in yyyt, then Rt,new at time step t is the Rt,new given
in the missing values modification for R (equation 66).

6 Implementation comments

The EM algorithm is a hill-climbing algorithm and like all hill-climbing algo-
rithms it can get stuck on local maxima. There are a number approaches to
doing a pre-search of the initial conditions space, but a brute force random
Monte Carol search appears to work well (Biernacki et al., 2003). It is slow, but
normally sufficient. In my experience, Monte Carlo initial conditions searches
become important as the fraction of missing data in the data set increases.
Certainly an initial conditions search should be done before reporting final esti-
mates for an analysis. However in our12 studies on the distributional properties
of parameter estimates, we rarely found it necessary to do an initial conditions
search.

The EM algorithm will quickly home in on parameter estimates that are
close to the maximum, but once the values are close, the EM algorithm can
slow to a crawl. Some researchers start with an EM algorithm to get close to
the maximum-likelihood parameters and then switch to a quasi-Newton method
for the final search. In many ecological applications, parameter estimates that
differ by less than 3 decimal places are for all practical purposes the same. Thus
we have not used the quasi-Newton final search.

Shumway and Stoffer (2006) imply in their discussion of the EM algorithm
that both ξ and V1 can be simultaneously estimated. Others have noted that the
algorithm bogs down when one attempts this, and this has been our experience.
Harvey (1989) discusses that there are only two allowable cases for the initial
conditions: 1) fixed but unknown and 2) a initial condition set as a prior. In
case 1, ξ is then estimated as a parameter and V1 is held fixed at 0. In case
2, neither ξ nor V1 are estimated. Rather they are specified, not estimated, as
part of the model. In the Holmes and Ward (2010) paper, we use case 1.

For case 1, one cannot set V1 = 0 because ξ would never be able to leave the
initial value – because you told it not to by setting its variance to zero. So, the
algorithm won’t work. If you try to circumvent this by setting V1 equal to some
small, but not zero, value, the algorithm will work but it will be horribly slow.
The solution, I found, is to set V1 to a large value, e.g. V1 = Im where Im is
the m×m identity matrix. The final maximum-likelihood parameter values are
unaffected by V1. Setting V1 = Im, lets the EM algorithm find the maximum-
likelihood ξ value quickly. Once all the maximum-likelihood parameters are

12“Our” and “we” in this section means work and papers by E. E. Holmes and E.J. Ward.

34

found via the EM algorithm, the algorithm reruns the Kalman filter13 with the
maximum-likelihood parameters and V1 = 0 to obtain the correct likelihood for
case 1.

In some cases, the update equation for one parameter needs other parame-
ters. Technically, the Kalman filter/smoother should be run between each pa-
rameter update, however following Ghahramani and Hinton (1996) the default
MARSS algorithm skips this step (unless the user sets control$EMsafe=TRUE)
and each updated parameter is used for subsequent update equations.

7 MARSS R package

R code for the Kalman filter, Kalman smoother, and EM algorithm is pro-
vided as a separate R package, MARSS, available on CRAN (http://cran.r-
project.org/web/packages/MARSS). MARSS was developed by Elizabeth Holmes,
Eric Ward and Kellie Wills and provides maximum-likelihood estimation and
model-selection for both unconstrained and constrained MARSS models. The
package contains a detailed manual which gives further information on the algo-
rithms behind the likelihood computations, bootstrapping, confidence intervals,
and model selection criteria.

References

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for
the EM algorithm for getting the highest likelihood in multivariate gaussian
mixture models. Computational Statistics and Data Analysis, 41(3-4):561–
575.

Ghahramani, Z. and Hinton, G. E. (1996). Parameter estimation for linear
dynamical systems. Technical Report CRG-TR-96-2, University of Totronto,
Dept. of Computer Science.

Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman
filter. Cambridge University Press, Cambridge, UK.

Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices,
with some uses in jacobians and multivariate statistics. The Canadian Journal
of Statistics, 7(1):65–81.

McLachlan, G. J. and Krishnan, T. (2008). The EM algorithm and extensions.
John Wiley and Sons, Inc., Hoboken, NJ, 2nd edition.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear gaussian
models. Neural Computation, 11:305–345.

13Technically, the output from the Kalman filter is used in the ‘innovations form of the
likelihood’ (eqn 4.67 in Shumway and Stoffer, 2006) to compute log L(yyyT

1 |Θ̂).

35

Shumway, R. and Stoffer, D. (2006). Time series analysis and its applications.
Springer-Science+Business Media, LLC, New York, New York, 2nd edition.

Shumway, R. H. and Stoffer, D. S. (1982). An approach to time series smoothing
and forecasting using the EM algorithm. Journal of Time Series Analysis,
3(4):253–264.

Wu, L. S.-Y., Pai, J. S., and Hosking, J. R. M. (1996). An algorithm for esti-
mating parameters of state-space models. Statistics and Probability Letters,
28:99–106.

Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R., and Beukema, J. J. (2003).
Estimating common trends in multivariate time series using dynamic factor
analysis. Environmetrics, 14(7):665–685.

36

